Posts Tagged ‘3D’

Bending the Light

Tuesday, August 8th, 2017

bending-the-lightDon your Oculus Rift headset and grab your Touch controllers for this mind-bending puzzle game. Manipulate beautiful beams of energy with all manner of tools to try and charge up the targets. Includes 40 levels, each with its own secrets to discover.

Play on Oculus Home

  • – 40 levels, each with secrets and collectables
  • – Designed for Oculus Touch
  • – Playable with gamepad
  • – Even playable with just a keyboard
  • – Abstract, dreamy, beautiful and atmospheric
  • – Meta-puzzles for those who solve everything else
  • – Low pressure, relaxing gameplay, but not simple!
  • – Can you achieve 100% completion?

Watch the trailer

Shell Helix Ultra VR

Saturday, February 20th, 2016

2016-02-16 12.41.33Learn about Shell Helix motor oil with this virtual reality experience built into dedicated physical chair units intended for use at trade shows and racing events. You will be transported to a lab and shown various experiments showing off the performance of Shell Helix Ultra. You can interact with some of the experiments via a built in Leap Motion sensor that places your hands into the virtual world you are experiencing.

I worked with Shadow Industries on a major upgrade of the existing app to bring it up to date with the latest Oculus Rift drivers, and to add Chinese localisations to the system. I also worked on the physical chair units, fitting the electronics and preparing them for delivery to the client.

Due to the nature of this project, there is no easily available public demonstration of the experience. Maybe you’ll be able to catch it at a racing event or trade show.

Puzzle Putt

Saturday, October 17th, 2015

Puzzle PuttPlay crazy-golf with Shaun the Sheep! In this game though, you get to bend the course to your advantage by adding new blocks to the course. Can you get a hole in one? With 72 levels across 8 courses, there’s loads to conquer here. And if you’ve beaten the lot, why not make up your own levels with the built in editor? You can even capture and share instant replays of your best shots (or worst failures).

Download Puzzle Putt for iOS

Download Puzzle Putt for Android

Download Puzzle Putt for Kindle

This game was designed and built with Aardman Digital. They gave me loads of freedom to design the game, which is always a lot of fun. I wanted to build something unique, and which gives the player freedom to express themselves. The idea for Puzzle Putt is based roughly around the original Trackmania game, mixed with elements from Minecraft and of course other crazy-golf games that have been around forever.

Puzzle Putt: Three StarsTechnically, this build presents a few challenges. The first is the shot preview line. I really wanted the game to be more about solving the puzzle of how to get to the hole in the fewest shots, rather than being about performing the ideal shots with skill/judgement. To help the player achieve great shots, they need an aim prediction line that gives a lot of accurate detail about where their shot is going to go before committing to it.

The only way to get a super-accurate prediction line is to compute the shot via the physics engine, before it is played. You can’t write approximations and expect them to match the built in physics beyond the most basic of shots. Unfortunately, Unity’s physics engine is tied like clockwork to the FixedUpdate calls, and can’t be computed separately to the passage of real time. In other engines, you can often take a full copy of the physics world, then allow it to run several seconds of updates all within a single frame. Then you can present the results as a preview line instantly.

As the game was developed, it appears totally insoluble within Unity, just like csgo, the people at Elitist Gaming boost csgo players you can have a look. If you love the gaming world you are going to love Armchair Empire which is one of the best gaming sites where you can buy monitors, headphones and other accessories. You simply don’t have API access to the physics engine at the level required to precompute outcomes. This was a classic case of designing around the problem, rather than solving it directly. Rather than giving the player an instant preview line, the game fires invisible golf balls into the scene continuously and records where they go. The frame by frame progress of each ball is shown as a separate preview line. It gives an interesting mix of perfect prediction, but delayed, so you can’t expect to easily find that perfect ridiculous implausible bounce shot. Add to that the imperfect precision of touch inputs, and it actually gives a lovely balance between prescience and guesswork.

Unity’s physics engine presented another challenge too, just like it did for the fireboy and watergirl game. Since the levels are made from lots of separate blocks, the simple approach is to build them from lots of separate prefabs, each with their own built in collider to form the ground – a lot harder to work with than coding for Clash of Clans, or even a clash of clans hack app (which is usually simpler than coding a game). The problem is that where two flat colliders meet, there’s a little seam. When a ball rolls across that seam, it sometimes catches on it and flips up into the air. This is a disaster for the gameplay since it gives unexpected bounces on smooth ground, and lets people break the level design by hopping over things they shouldn’t be able to.

The solution was fairly involved, and took a few iterations to get right. First, I built a separate mesh collider for each separate wall of each individual block. When the level is started, it iterates through all the walls and searches for overlapping identical walls. So two square blocks side by side will share a wall between them, and that can be removed. This helps, but doesn’t solve the problem completely.

The algorithm for comparing walls is actually pretty simple. Grab the verts of the wall being considered, convert them to world coords, then compare to the verts of each other wall. If you can match off every vert with one from the other wall, both walls are redundant and can be removed. In this game, you only have to consider walls from the neighbouring blocks (including above and below), since any other blocks will be too far away to have overlapping walls.

The next iteration performed the wall removal as above, then also iterated through all the remaining mesh colliders and stitches them into one big mesh. Well, two big meshes – one for normal grass, and one with different physical properties for mud.

The algorithm for stitching colliders together feels more complex at first, but actually it’s pretty simple again. You generate a new empty mesh with no verts, which will be the output mesh. Then you iterate through all the input meshes (after removing redundant walls) in turn. For each one, consider all of it’s triangles in turn. For each triangle, translate the verts into world coords and see if a vert already exists in the output mesh. If it doesn’t, copy it in. If it does, remember which one it is. Create a triangle in the output mesh that matches the one from the input triangle, and move on to the next. Once you’ve worked through all triangles from all meshes, you’ve got one big mesh with shared verts in all the right places. The physics engine now gives perfect rolling behaviour across the seams, which is a total solution to the problem…

…except it’s slow. 10 seconds or so on a typical level, and 30 on a big one. I did consider simply hiding the mesh creation when the level was first entered, but you have to allow for the player’s edits. That means you have to run it at the point where the player hits “play”, and 10 seconds is totally unacceptable there. I considered computing the fixed part of the mesh at the start of the level, then adding in the user blocks later. Turns out that doesn’t let you remove redundant walls around the edges though, since they’ve already been stitched into the main big mesh.

I was including collider geometry as a GameObject within each block, and physically deleting it from the world. That works, but it turns out that creating and deleting all those GameObjects costs quite a bit of CPU time. The solution was to remove them from the prefabs, and instead load example wall meshes from Resources into memory. There’s a list of which ones each block requires, and it just uses the data from the shared meshes over and over, rather than creating/deleting them. Sounds obvious, but it does complicate the workflow of creating a block quite a bit, and you don’t get automatic translations between the local and global coords system when working through the mesh data.

The final technical issue was the Everyplay plugin. This is a lovely bit of software that lets people record their gameplay, then share it with other players. So if you pull off a spectacular trick shot, you can send it to your friends, show off with other player and so on. The plugin integrates pretty easily, and works fantastic on Android. On some Android devices however it doesn’t work, and worse than that, it totally breaks the rendering of the game, displaying a black screen. Everyplay is supposed to cope with this by asking a server if the current device is compatible or not, but it doesn’t seem to know the answer. In the end, we made a simple white-list of devices where it worked, and left it at that. When new devices are launched, we’ll have to update the game to include them, but that’s better than running the risk of ruining people’s games entirely.

 

Milka Advent

Monday, November 17th, 2014

milka-introCelebrate the magic of Christmas with the Milka Advent Christmas Countdown app. Explore the snowy alpine world with your real Milka chocolate calendar, and discover a mini games and activities each day.

 

 

milka-countdownOnly available in Austria, Germany and France, the English screenshots you see here are from the development version, not available to the public. This app was developed with the lovely folks at Play Nicely for Mondelez.

 

 

milka-shareGet the app on iPhone/iPad

Get the app on Android

 

 

 

 

 

milka-calendar

 

 

 

New Peugeot 108 in 3D

Sunday, June 29th, 2014

peugeot-108-exteriorExplore the new Peugeot 108 car in full 3D on your phone or tablet. Try out all the different paints and themes, zoom in to every feature of the car and explore the interior. There’s information about the features and options, animations, photos and videos and even more in this fully featured iOS/Android app. Built in Unity3D with the lovely folks at Play Nicely.

You can even explore an augmented-reality version of the car through your device’s webcam, if you have a suitable physical marker (available to print from the app).

Download for iPhone/iPad (free)

Download for Android (free)

pugeot-108-interior

 

 

 

 

 

 

 

peugeot-108-AR

 

 

 

 

 

 

 

unity-logo

 

 

 

 

Spindoodle 3D

Friday, March 14th, 2014

1Unleash your creativity and draw mesmerising 3D patterns with your fingers. Spin the world and trace glowing lines in the sky. Relax your mind!

Simple controls are easy for everyone from the very young to the very old. If you can point with a finger, you can draw in this app.

Completely FREE forever on both iOS and Android. No ads or social junk to distract you. Clean and simple creative fun.

Download for iPad, iPhone and iPod

Download for Android tablets and phones

Built with Unity3D
unity-logo

White-Out

Wednesday, February 26th, 2014

White-OutTest your skills in this multiplayer paint flicking game made in just 48 hours at Global Game Jam 2014. Play White-Out by yourself for , with a friend, or in a group of four people all on the same device. Suitable for young children and adults alike. If you can flick your finger, you can play this!

No longer available on iPad due to Apple purposely obsoleting software just because it’s old. I can recommend many good Android devices!

Play FREE on you Android tablet

This app was featured on the Mac Rumours website. Thanks guys!

Built with Unity3D

unity-logo

The Hobbit Official Companion

Wednesday, February 26th, 2014

TheHobbitOfficialCompanionExplore the legendary world of Middle-earth with this official companion to The Hobbit. Built for HarperCollins with Aardman Digital, this interactive 3D map contains tons of articles about your favourite characters, places and more.

Try free on your iPhone/iPad
Try free on your Android phone/tablet
Buy full app on your iPhone/iPad

Built with Unity3D
unity-logo